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Abstract. In this paper we consider some fourth order linear and semilinear equations
in RN and make a detailed study of the solvability of the Cauchy problem. For the linear
equation we consider some weakly integrable potential terms, and for any 1 < p <∞ prove
that for a suitable family of Bessel potential spaces, Hα

p (RN ), the linear equation defines a
strongly continuous analytic semigroup.

Using this result, we prove that the nonlinear problems we consider can be solved for
initial data in Lp(RN ) and in H2

p (RN ). We also find the corresponding critical exponents,
that is, the largest growth allowed for the nonlinear terms for these classes of initial data.

1. Introduction

In this article we consider the following Cauchy problem in RN ,{
ut + ∆2u = f(x, u), t > 0, x ∈ RN ,

u(0, x) = u0(x), x ∈ RN ,
(1.1)

where the nonlinear term is assumed to be of the general form

f(x, u) = g(x) +m(x)u+ f0(x, u), x ∈ RN , u ∈ R, (1.2)
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for some suitable m, g described below and

f0 : RN × R→ R is locally Lipschitz in u ∈ R uniformly for x ∈ RN , (1.3)

and

f0(x, 0) = 0,
∂f0

∂u
(x, 0) = 0, x ∈ RN . (1.4)

In some cases, depending on the space in which we solve (1.1), we will also require a
growth condition in f0 of the form

|f0(x, u1)− f0(x, u2)| ≤ c|u1 − u2|(1 + |u1|ρ−1 + |u2|ρ−1), u1, u2 ∈ R. (1.5)

for some ρ > 1 and c > 0.

Hence, our goal is to give suitable conditions on g,m and ρ under which (1.1) has a local
solution for certain classes of initial data. Here we consider initial data in some space of
Bessel potentials, which we generically denote Hα

p (RN), (see [14]). When p = 2 we will

denote these spaces as Hα(RN) which are Hilbert spaces. In particular, we are interested in
the cases when u0 ∈ Lp(RN) and u0 ∈ H2

p (RN).
In order to obtain local solutions with low regularity conditions on m we must first study

in detail the solutions of linear equations of the form{
ut + ∆2u = C(x)u, t > 0, x ∈ RN ,

u(0) = u0

(1.6)

with initial data in Bessel spaces Hα
p (RN). Here, we will assume that

C ∈ LrU(RN), max{N
4
, 1} < r ≤ ∞, (1.7)

where this space is defined, for 1 ≤ r ≤ ∞ as

LrU(RN)
def
= {φ ∈ Lrloc(RN) : ‖φ‖Lr

U (RN ) = sup
y∈RN

‖φ‖Lr(B(y,1)) <∞}

(see [5, 10] and note that L∞U (RN) := L∞(RN)).
First, regarding the linear problem (1.6) we will prove, among other, the following result.

Theorem 1.1. Suppose that C ∈ LrU(RN) and r > max{N
4
, 1}.

i) Then the operator AC = ∆2−C(x)I is a sectorial operator in Lp(RN) and −AC generates
a C0 analytic semigroup, {e−ACt : t ≥ 0}, in Lp(RN) for any 1 < p <∞.
ii) The scale of fractional power spaces, {Eα

p , α ∈ R}, associated to this operator, is given
by

Eα
p =

{
H4α
p (RN) for 0 ≤ α ≤ β∗(p) ≤ 1,

(H−4α
p′ (RN))′ for − 1 ≤ −β∗(p) ≤ α < 0,

(1.8)

with 0 < β∗(p) = 1 +
(
N
4p
− N

4r

)
−
≤ 1 and β∗(p) = β∗(p′) = 1 +

(
N
4p′
− N

4r

)
−
, where

x− = min{x, 0} denotes the negative part of x ∈ R.
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iii) On this scale of spaces, the analytic semigroup generated by −AC satisfies, for some
ω ∈ R,

‖e−ACt‖L(Eσ
p ,E

ξ
p) ≤M

e−ωt

tξ−σ
t > 0, −β∗(p) ≤ σ ≤ ξ ≤ β∗(p). (1.9)

iv) Also, if p = 2 then (1.9) is satisfied for some ω > 0 if and only if there is a certain
ω0 > 0 such that ∫

RN

(|∆φ|2 − C(x)φ2) ≥ ω0‖φ‖2L2(RN ), (1.10)

for all φ ∈ H2(RN). We say then that the C0 analytic semigroup {e−ACt : t ≥ 0} in L2(RN)
is exponentially decaying as t→∞.

Remark 1.2. i) Observe that β∗(p) = 1 iff r ≥ p and, for all 1 < p <∞,

β∗(p) ≥ 1− N

4r
> 0.

Hence, the interval [−β∗(p), β∗(p)] contains at least the symmetric interval

[−1 +
N

4r
, 1− N

4r
].

Also, the length of the interval [−β∗(p), β∗(p)] is L = β∗(p) + β∗(p′) and then

L =


1 + β∗(p′), if p′ ≥ r ≥ p

1 + β∗(p), if p ≥ r ≥ p′

2 if r ≥ p, p′

2 + N
4
− N

2r
if p, p′ ≥ r.

Note that in any case L > 1 since r > N
4

and r > 1.
ii) Note that we can use the usual notation

H−4α
p (RN) = (H−4α

p′ (RN))′ α > 0

and then (1.8) becomes Eα
p = H4α

p (RN) for α ∈ [−β∗(p), β∗(p)].
iii) Note that it is implicit in (1.10) that since C satisfies (1.7) and φ ∈ H2(RN), then
Cφ2 ∈ L1(RN), see (2.24).

It is worth stressing that in Theorem 1.1 there is no restriction other than r > N
4

and
1 < p < ∞. However the Theorem reflects that, depending on the comparison of r with p
or p′, the range of spaces in (1.8) for which we have a nice semigroup as in (1.9) is biased to
either negative or positive indexes. In fact the case r ≥ p (and hence β∗(p) = 1) reflects that
the potential is suitable integrable with respect to the base space, Lp(RN). Hence, in this
case the potential can be naturally handled as a perturbation of the bi-Laplacian operator.
In particular Cφ ∈ Lp(RN) for any function φ ∈ D(∆2) = H4

p (RN). See for example [2] for
a similar situation for the case of second order operators.

On the other hand when r < p, the potential is poorly integrable with respect to the base
space and it is more difficult to handle as a perturbation of the bi-Laplacian. In particular
Cφ is not in Lp(RN) for every function in H4

p (RN). Hence, the potential must be treated as

a perturbation of ∆2 in a weaker space than Lp(RN); see the comment after Lemma 2.3. For
3



this we make use of the extrapolated scale of fractional power spaces of ∆2, for which we
follow the general construction in [1]. These spaces are precisely the Bessel spaces Hα

p (RN)
with α ∈ [−1, 1] and therefore Theorem 1.1 also states that in a portion of this scale the
operator AC = ∆2 − C(x)I is a nicely behaved operator.

In order to make precise the remaining assumptions on (1.1), we will assume that in (1.2)
we have

m ∈ LrU(RN), max{N
4
, 1} < r ≤ ∞ (1.11)

and, for simplicity,
g ∈ Lp(RN), 1 < p <∞. (1.12)

Then we have the following results on the local existence of (1.1).

Theorem 1.3. Let 1 < p < ∞, assume (1.2)–(1.4), (1.11), (1.12) and suppose that (1.5)
holds with some

1 < ρ ≤ ρ1
c := 1 +

4p

N
Then (1.1) is locally well posed in Lp(RN).

Now we consider local well posedness in H2
p (RN), 1 < p <∞. For this, note that we need

that the scale of spaces in (1.8) contains H2
p (RN), which requires

β∗(p) = 1 +
(N

4p
− N

4r

)
−
>

1

2
, (1.13)

that is, N
r
− N

p
< 2.

Note that (1.13) is satisfied if r ≥ p or if p ≤ N
2
, since r > N

4
. Also, (1.13) is satisfied for

p = 2 since r > max{N
4
, 1}. Hence, we have

Theorem 1.4. Assume (1.2)–(1.4), (1.11) and (1.12). Then the problem (1.1) is locally
well posed in H2

p (RN), with 1 < p <∞, provided that (1.12) holds and either

(i) 2 > N
p
> N

r
− 2

(ii) 2 = N
p

and (1.5) holds with some 1 < ρ <∞,

(iii) 2 < N
p

and (1.5) holds with some 1 < ρ ≤ ρ2
c := 1 + 4p

N−2p
.

In both Theorems 1.3 and 1.4 a solution of (1.1) with an initial value u0 ∈ Lp(RN), or
u0 ∈ H2

p (RN) respectively, is defined on the maximal interval of existence [0, τu0) and satisfies
on this interval the variation of constants formula

u(t) = e(−∆2+mI)tu0 +

∫ t

0

e(−∆2+mI)(t−s)(f0(·, u(s)) + g
)
ds, (1.14)

where e(−∆2+mI)t is the semigroup in Lp(RN) as in Theorem 1.1. Furthermore, if u0 ∈ Lp(RN)
then

u ∈ C([0, τu0), L
p(RN)) ∩ C((0, τu0), H

4β∗(p)
p (RN)) ∩ C1((0, τu0), L

p(RN)), (1.15)

while if u0 ∈ H2
p (RN)

u ∈ C([0, τu0), H
2
p (RN)) ∩ C((0, τu0), H

4β∗(p)
p (RN)) ∩ C1((0, τu0), L

p(RN)), (1.16)
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where β∗(p) = 1 +
(
N
4p
− N

4r

)
−

as in Theorem 1.1.

Concerning the maximal interval of existence of a solution note that in the “subcritical”
cases, that is when ρ < ρ1

c , or ρ < ρ2
c , respectively, it has the property that

τu0 <∞ implies lim sup
t→τ−u0

‖u(t)‖Lp(RN ) =∞, (1.17)

or respectively,

lim sup
t→τ−u0

‖u(t)‖H2
p(RN ) =∞ (1.18)

(see [9, Theorem 3.3.4] and [6, Corollary 1.1]). The critical cases, that is when ρ = ρ1
c , or

ρ = ρ2
c , respectively are more involved and (1.17), (1.18) are not true in general; see [6] for

related results.
Note that for solving the nonlinear problem (1.1) we use the technique developed in [3],

which requires checking some properties of the Nemitsky nonlinear operator associated to the
nonlinear term in (1.1), between suitable spaces of the ones appearing in Theorem 1.1. Also,
with this approach, (1.1) can be solved for initial data in other spaces of Bessel potentials.
Nonetheless we intentionally focus here on the spaces Lp(RN) and H2

p (RN) as they appear
naturally when studying asymptotic behavior of the solutions, see [8].

Also, in Theorems 1.3 and 1.4 the assumption on g can be suitably weakened. For example
we can allow g to belong to some Hs

p(RN) spaces for s < 0. This however would make the
solutions to be less regular than in (1.15) or (1.16). As we have focused in solving (1.1) with
linear potential as in (1.11), we have not pursued this weaker regularity of g in this paper.

Finally, it is worth noting that although the range of suitable spaces for the linear equation
changes with r and p, as seen in Theorem 1.1, this has no effect in existence results in
Theorems 1.3 and 1.4 nor in the the critical exponents appearing in these results.

Therefore, in Section 2 we analyze in detail the solutions of the linear equation (1.6) with
potentials as in (1.7). In particular, we prove Theorem 1.1. On the other hand, in Section
3 we will prove Theorems 1.3 and 1.4.

Acknowledgment. This work was carried out while the first author visited Departamento
de Matemática Aplicada, Universidad Complutense de Madrid. He wishes to acknowledge
hospitality of the people from this Institution.

2. On some fourth order linear parabolic equations in Lp(RN)

We first prove that the bi-Laplacian operator ∆2 in Lp(RN), 1 < p < ∞, is a sectorial
operator as in [9, Definition 1.3.1].

Proposition 2.1. For any 1 < p <∞ the bi-Laplacian operator

A = ∆2

considered in Lp(RN) with domain H4
p (RN) is a densely defined sectorial operator. Conse-

quently, −A generates in Lp(RN), 1 < p <∞, a C0 analytic semigroup {e−∆2t}.
5



Proof: Recall from [9, §1.6] that the resolvent of the Laplacian ∆ in Lp(RN), 1 < p < ∞,
satisfies the estimate

‖(λI −∆)−1φ‖Lp(RN ) ≤
c

(cos θ
2
)

N
2

+1|λ|
‖φ‖Lp(RN ) (2.1)

for any |argλ| ≤ θ < π. Therefore, whenever 0 < β ≤ |argλ| ≤ π, the equation

(λI −∆2)ψ = φ ∈ Lp(RN)

has the unique solution ψ ∈ H4
p (RN) given by

ψ = −(ωI −∆)−1(−ωI −∆)−1φ

with ω such that ω2 = λ and thus satisfying β
2
≤ |arg(±ω)| ≤ π − β

2
. From (2.1) we get

‖(λI −∆2)−1φ‖Lp(RN ) ≤
c2

(cos 2π−β
4

)N+2|λ|
‖φ‖Lp(RN ), φ ∈ Lp(RN)

whenever β ≤ |argλ| ≤ π and β ∈
(
0, π

2

)
, which proves the result. �

Denote by Xα
p , α ≥ 0, the fractional power spaces associated with A in Lp(RN), p > 1.

Recall from [9, p. 29] that these spaces are defined as the domains of fractional powers of
A+ λI, where λ is any constant such that Re σ(A+ λI) > 0; thus in what follows we set

Xα
p = D((A+ I)α), α ≥ 0, 1 < p <∞.

With the aid of complex interpolation method the spaces Xα
p can be characterized in

terms of the spaces of Bessel potentials. This is immediate when p = 2 as in this case A is a
selfadjoint operator in L2(RN) and the imaginary powers (A+ I)it are unitary operators in
L2(RN) (see [14, 1.18.10]). For p = 2 we thus have the characterization

Xα
p = [L2(Ω), H4

p (RN)]α = H4α
p (RN), α ∈ (0, 1). (2.2)

In what follows we prove that (2.2) holds for any 1 < p <∞.

Proposition 2.2. For every 1 < p < ∞ and α ∈ (0, 1) the fractional power space Xα
p

associated with A = ∆2 in Lp(RN) coincides with the Bessel potentials space H4α
p (RN).

Proof: Let Λ = −∆ in Lp(RN), p > 1, and note that [11, Theorem 10.6] yields:

[(Λ + I)2]α = (Λ + I)2α, α > 0; (2.3)

in particular

[(Λ + I)2]
1
2 = (Λ + I).

By interpolation (see [14]) we have

‖∆φ‖Lp(RN ) ≤ ‖φ‖H2
p(RN ) ≤ c‖φ‖

1
2

H4
p(RN )

‖φ‖
1
2

Lp(RN )
, φ ∈ H4

p (RN).

Recalling that the norms ‖(∆2 + I)φ‖Lp(RN ) and ‖φ‖H4
p(RN ) are equivalent (see [14, §2.5.3

Step 3]) we infer that 2∆ is a relatively bounded perturbation of ∆2 + I and ∆2 + I + 2∆ =

(Λ + I)2 is sectorial in Lp(RN). Since (Λ + I)2 − (A + I) = −2∆ and ∆[(Λ + I)2]−
1
2 =

∆(Λ + I)−1 = −I + (Λ + I)−1 is a bounded operator in Lp(RN) the domains of [(Λ + I)2]α
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coincide for α ∈ (0, 1) with the domains of (A + I)α (see [9, Theorem 1.4.8]). Combining
this with (2.3) we get

Xα
p = D((A+ I)α) = D((Λ + I)2α).

Since the domains of (Λ+ I)s, s > 0, are known to coincide with H2s
p (RN) (see [7, (1.3.62)]),

the proof is complete. �

Following [1, p. 262] we can now construct the extrapolated fractional power scale for
A = ∆2. For this denote by (Xp)

−1 the completion ofXp = Lp(RN) under the ‖(A+I)−1·‖Xp-
norm. Then A + I extends uniquely to sectorial operator A + I : Xp → (Xp)

−1. Consider
then the one-sided fractional power scale

X̂α
p :=

(
(Xp)

−1
)α
, α ≥ 0. (2.4)

Note that, due to Proposition 2.2 and [1, Theorem V.1.4.12],

X̂α
p =

{
H

4(α−1)
p (RN), α ∈ [1, 2],

(H
4(1−α)
p′ (RN))′, α ∈ [0, 1),

(2.5)

where one can also use the usual notation letting

H−s
p (RN) = (Hs

p′(RN))′ for s > 0.

The above results corresponds to C = 0 in Theorem 1.1 whereas our further concern is
the situation when C is a non-zero potential as in (1.7). In what follows we thus consider a
multiplication operator QC defined by C : RN → R; namely

QC(φ)(x) = C(x)φ(x), x ∈ RN ,

for any function φ : RN → R. Our concern will be to describe a portion of the scale in which
QC is continuous. Note that for a poorly integrable potential any ‘target space’ of QC is
rather expected to belong to a negative portion of the scale.

We will consider potentials of the class LrU(RN), as in (1.7), and whenever s ∈ (1,∞) we
will write

β∗(s) := 1 +

(
N

4s
− N

4r

)
−
.

With this set-up we will prove a technical lemma, which builds upon embedding properties
of spaces of Bessel potentials.

Lemma 2.3. Suppose that C ∈ LrU(RN) with r > max{N
4
, 1}, p ∈ (1,∞) and let β be any

number from the interval

I(p) = (−β∗(p′), β∗(p)− 1] ⊂ (−1, 0].

Then, there is a certain interval (α0, 1 + β) such that for any α ∈ (α0, 1 + β) we have an
estimate of the form

‖Cφ‖(H−4β

p′ (RN ))′ ≤ c‖C‖Lr
U (RN )‖φ‖H4α

p (RN );

equivalently

QC ∈ L(H4α
p (RN), (H−4β

p′ (RN))′) and ‖QC‖L(H4α
p (RN ),(H−4β

p′ (RN ))′) ≤ c‖C‖Lr
U (RN ).
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Proof: The main idea that drives the argument can be found in [13, Lemma 6.4 part i)].
We observe that

‖Cφ‖(H−4β

p′ (RN ))′ = sup
‖ψ‖

H
−4β
p′

(RN )
=1

|
∫

RN

Cφψ|

and we cover RN with cubes Qi, i ∈ ZN , centered at i ∈ ZN and having unitary edges
parallel to the axes so that RN = ∪i∈ZNQi, where Qi ∩Qj = ∅ for i 6= j. Hence, we get

|
∫

RN

Cφψ| ≤
∑
i∈ZN

∫
Qi

|C||φ||ψ| ≤
∑
i∈ZN

‖C‖Lp1 (Qi)‖φ‖Lp2 (Qi)‖ψ‖Lp3 (Qi)

≤ ‖C‖Lr
U (RN )

∑
i∈ZN

‖φ‖Lp2 (Qi)‖ψ‖Lp3 (Qi)

where a generalized Hölder’s inequality was applied with

p1 = r

and certain p2, p3 ∈ [r′,∞] satisfying

1

p2

+
1

p3

=
1

r′
.

We are going to choose such p2, p3 ∈ [r′,∞] and α ∈ (0, β + 1) that

H4α
p (Qi) ↪→ Lp2(Qi), H−4β

p′ (Qi) ↪→ Lp3(Qi). (2.6)

Note that, if this is the case, then

|
∫

RN

Cφψ| ≤ c‖C‖Lr
U (RN )

∑
i∈ZN

‖φ‖H4α
p (Qi)‖ψ‖H−4β

p′ (Qi)

≤ c‖C‖Lr
U (RN )(

∑
i∈ZN

‖φ‖pH4α
p (Qi)

)
1
p (

∑
i∈ZN

‖ψ‖p
′

H−4β

p′ (Qi)
)

1
p′ .

Consequently, using the estimate

(
∑
i∈ZN

‖φ‖q
H4γ

q (Qi)
)

1
q ≤ c′‖φ‖H4γ

q (RN ), γ ∈ (0, 1), q ∈ (1,∞),

which can be proved analogously as in [4, Lemma 2.4], we obtain

|
∫

RN

Cφψ| ≤ c̃‖C‖Lr
U (RN )‖φ‖H4α

p (RN )‖ψ‖H−4β

p′ (RN )

which gives the result.
From what was said above it is clear that to complete the proof it suffices to show that

one can choose the parameters p2, p3, α as required in (2.6). Simultaneously we would like
to ensure that the set of admissible β′s, for which all this can be done, coincides with the
interval I(p).

In what follows we are looking for

p2, p3 ∈ [r′,∞],
1

p2

+
1

p3

=
1

r′
, 0 < α < β + 1, −1 ≤ β ≤ 0 (2.7)

8



which satisfy

α− N

4p
≥ − N

4p2

, −β − N

4p′
≥ − N

4p3

. (2.8)

Note that after adding both inequalities in (2.8) we have α− β − N
4
≥ − N

4r′
so that we will

actually consider

α ∈ [β +
N

4r
, β + 1). (2.9)

From (2.7), (2.9) we infer that N
4p3

= N
4r′
− N

4p2
and α = θ(N

4r
−1)+β+1 for some θ ∈ (0, 1],

which allows us to write (2.8) as

θ(
N

4r
− 1) + β + 1− N

4p
≥ − N

4p2

, −β − N

4p′
≥ N

4p2

− N

4r′
(2.10)

or, equivalently,

− N

4p2

+
N

4p
− N

4r
≥ β ≥ − N

4p2

+ θ(1− N

4r
)− 1 +

N

4p
. (2.11)

Now, varying p2 in the interval [r′,∞] and θ ∈ (0, 1] we observe that on the left hand side
of (2.10) we can achieve no more than N

4p
− N

4r
and that the latter number corresponds to

p2 =∞. As for the infimum of the right hand side, it will be achieved for p2 = r′, θ = 0 and
thus equal to − N

4r′
− 1 + N

4p
= −1− N

4p′
+ N

4r
= −β∗(p′).

Summarizing we have that, whenever β ∈ I(p), (2.10) can be satisfied for some p2 ∈ [r′,∞]
and θ ∈ (0, 1]. Consequently, whenever β ∈ I(p), (2.8) can be satisfied with some p2, p3 ∈
[r′,∞] satisfying 1

p2
+ 1

p3
= 1

r′
and with arbitrary α < β + 1 which is close enough to β + 1.

On the other hand (2.7)-(2.8) will never hold together if β 6∈ I(p) as, taking into account
that θ ∈ (0, 1], any such β will lie outside the range of the left/right hand sides of (2.11). �

Note that the interval I(p) in the Lemma above describes the set of the admissible β’s

such that QC is a relatively bounded perturbation of the bi-Laplacian in (H−4β
p′ (RN))′. Thus,

note that 0 ∈ I(p) only if β∗(p)− 1 = 0, or in other words, r ≥ p, which is not assumed to
hold in general.

We now consider a perturbation of bi-Laplacian operator with a potential C ∈ LrU(RN).
Namely, we consider

AC = ∆2 − C(x)I in Lp(RN)

with the domain DLp(AC) which will be specified below. Our further concern will be to show
that AC is a negative generator of a C0 analytic semigroup {e−ACt : t ≥ 0} in Lp(RN).

Proposition 2.4. Suppose that C ∈ LrU(RN) where r > max{N
4
, 1}.

Then, for each p ∈ (1,∞) and any β chosen from the interval

Î(p) := (−β∗(p′) + 1, β∗(p)] ⊂ (0, 1], (2.12)

AC with domain H4β
p (RN) generates a C0 analytic semigroup in Yp,β := H

4(β−1)
p (RN).

Furthermore, the associated fractional power spaces are given by

Y ζ
p,β =

{
H

4(β+ζ−1)
p (RN), ζ ∈ [1− β, 1],

(H
4(1−β−ζ)
p′ (RN))′, ζ ∈ [0, 1− β).

(2.13)
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Proof: We remark that A + I being sectorial in Lp(RN) can be also viewed as a sectorial

operator in the extrapolated space X̂0
p with domain X̂1

p . Also, A + I can be viewed as a

sectorial operator in X̂β
p with the domain X̂1+β

p , see V.1.2.6, page 260 in [1].

Now, given p ∈ (1,∞), β ∈ Î(p) and α < β which is close enough to β we infer from
Lemma 2.3 and (2.5) that

‖Cφ‖X̂β
p
≤ c‖φ‖X̂1+α

p
, φ ∈ X̂1+α

p .

Using the interpolation inequality for fractional power spaces (see [9, p. 27]) and Young’s
inequality we then have

‖Cφ‖X̂β
p
≤ c‖φ‖X̂1+α

p
≤ c′‖φ‖β−α

X̂β
p
‖φ‖1−(β−α)

X̂1+β
p

≤ ε‖φ‖X̂1+β
p

+ Cε‖φ‖X̂β
p

= ε‖(A+ I)φ‖X̂β
p

+ Cε‖φ‖X̂β
p
, φ ∈ X̂1+β

p , ε > 0.

(2.14)

Using (2.14) and the above properties of A + I we infer that AC considered in X̂β
p with

the domain X̂1+β
p is sectorial in X̂β

p as in this setting it is a relatively bounded perturbation
of A+ I.

On the other hand, coming back to the first line in (2.14) we have the estimate

‖Cφ‖X̂β
p
≤ c′‖φ‖β−α

X̂β
p
‖φ‖1−(β−α)

X̂1+β
p

= c′‖φ‖β−α
X̂β

p
‖(A+ I)φ‖1−(β−α)

X̂β
p

, φ ∈ X̂1+β
p ,

which ensures that, for any σ ∈ (β − α, 1), C(I + A)−σ is a bounded operator in X̂β
p (see

[9, p. 28-29]). Consequently, the fractional power spaces Y ζ
p generated by (AC , X̂

β
p ) coincide

for ζ ∈ [0, 1] with those generated by (A + I, X̂β
p ) (see [9, Theorem 1.4.8]), which proves

(2.13). �

Observe that with Proposition 2.4 we obtain below the satement on in part i) of Theo-
rem 1.1. More precisely, we have

Corollary 2.5. Suppose that C ∈ LrU(RN) where r > max{N
4
, 1}.

Then, for each p ∈ (1,∞), AC is a densely defined sectorial operator in Lp(RN), that is,
−AC generates in Lp(RN) a C0 analytic semigroup.

Furthermore, if Y ξ
p , ξ ≥ 0, denote the fractional power spaces associated to AC in Lp(RN)

then
Y ξ
p = H4ξ

p (RN), ξ ∈ [0, β∗(p)]. (2.15)

Proof: We first remark that due to Proposition 2.4 we have that Y 1−β
p,β = Lp(RN) whenever

β ∈ Î(p) as in (2.12). On the other hand, AC can be viewed as a sectorial operator in Y 1−β
p,β

(see (2.13)) with the domain

DLp(AC) = Y 2−β
p,β , (2.16)

where β is an arbitrary number from the interval Î(p). Thus using (2.13) with ζ = 1− β we
have that AC is sectorial in Lp(RN). Note that, letting

Cλ(x) := C(x)− λ, x ∈ RN , (2.17)
10



with any λ > 0 sufficiently large, Y ζ
p are actually the domains of AζCλ

above Lp(RN). In

particular, Yp = Y 0
p = Lp(RN) and DLp(AC) = Y 2−β

p,β coincides as a set with A−1
Cλ

(Lp(RN)) =

A−1
Cλ

(Y 1−β
p,β ).

Since Yp = Lp(RN) = Y 1−β
p,β , then using (2.13) with ζ = 1− β + ξ we obtain (2.15). �

Under the additional assumption that p ≤ r Corollary 2.5 applies with β = 1 as in this
case β∗(p) = 1. In particular, we have the following result.

Corollary 2.6. Suppose that C ∈ LrU(RN) with r > max{N
4
, 1}.

Then, for any 1 < p ≤ r,
i) DLp(AC) = H4

p (RN) and AC with this domain is sectorial in Lp(RN),

ii) the fractional power spaces Y ξ
p generated by (AC , L

p(RN)) coincide with H4ξ
p (RN) for

each ξ ∈ [0, 1].

Now, following again [1, p. 262] we can construct the extrapolated fractional power spaces
for AC . For this, choosing in (2.17) any sufficiently large λ > 0, we denote by (Yp)

−1 the
completion of Yp = Lp(RN) under the ‖A−1

Cλ
· ‖Yp-norm, which is so called extrapolated space

of Yp generated by AC . Then AC extends uniquely to sectorial operator AC : Yp → (Yp)
−1.

We then consider the one-sided fractional power scale

Ŷ α
p :=

(
(Yp)

−1
)α
, α ≥ 0,

and define the extrapolated fractional power scale of order 1 generated by (AC , Yp) letting

Eα
p := Ŷ α+1

p , α ≥ −1.

Note that E−α
p can be viewed for α ∈ (0, 1] as a completion of Yp = Lp(RN) with respect to

the ‖A−αCλ
· ‖Yp-norm. Also note that in the particular case C = 0 the above procedure has

already been carried out in (2.4).
We now obtain the characterization of the spaces Eα

p as stated in Theorem 1.1. In par-
ticular we show that the Eα

p spaces coincide with the fractional power spaces associated to

A = ∆2, for some range of α.

Corollary 2.7. Suppose that C ∈ LrU(RN) with r > max{N
4
, 1}.

Then, given any p ∈ (1,∞), for the two sided fractional power scale generated by (Yp, AC)
we have that

Eα
p =

{
H4α
p (RN) for β∗(p) ≥ α ≥ 0,

(H−4α
p′ (RN))′ for − β∗(p) ≤ α < 0,

(2.18)

where β∗(p) = β∗(p′).
On this scale of spaces, the analytic semigroup generated by −AC satisfies, for any −β∗(p) ≤

σ ≤ ξ ≤ β∗(p)

‖e−ACt‖L(Eσ
p ,E

ξ
p) ≤M

e−ωt

tξ−σ
, t > 0,

for some M ≥ 1 and ω ∈ R.
All the above results hold with β∗(p) = 1 whenever 1 < p ≤ r, with β∗(p) = 1 whenever

p′ ≤ r and with β∗(p) = β∗(p) = 1 if p, p′ ≤ r. In particular, the results hold with β∗(p) =
β∗(p) = 1 for any p ∈ (1,∞) if C ∈ L∞(RN).
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Proof: The proof follows from Corollaries 2.5, 2.6 and from the general results in [1, Theo-
rem V.1.4.12] and [9, Theorem 1.4.3]. �

Remark 2.8. Note that in the above results it is implicitly included that −AC generates

a C0 analytic semigroup on (H
4β∗(p′)
p′ (RN))′. Certainly, this could hardly be concluded in

Proposition 2.4 due to the ‘relative boundedness’ technique used therein, which did not work
well for the left extreme of the interval Î(p). Nonetheless, (H4β∗(p′)(RN))′ can be viewed as

a fractional power spaces Ŷ α+1
p whereas AC is sectorial in Ŷ σ

p for every σ ≥ 0.

Since we now turn our attention to the Hilbert space case, setting p = 2, we first recall
that

β∗(2) >
1

2
. (2.19)

From Corollary 2.6 if C ∈ LrU(RN) with r > N
4

and r ≥ 2, then DL2(AC) = H4(RN) and AC
with this domain is a symmetric operator in L2(RN). In what follows we prove that AC in this
case is also bounded below and that actually all these hold also when max{N

4
, 1} < r < 2,

in which case DL2(AC) is characterized as in (2.16).

Lemma 2.9. Suppose that C ∈ LrU(RN) with r > max{N
4
, 1}.

Then the domain of the operator AC in L2(RN), DL2(AC), is contained in H2(RN) and∫
RN

ACφψ =

∫
RN

∆φ∆ψ −
∫

RN

C(x)φψ =

∫
RN

φACψ, φ, ψ ∈ DL2(AC). (2.20)

Furthermore, for any ε ∈ (0, 1) there exists a certain cε > 0 such that∫
RN

(|∆φ|2 − C(x)φ2) ≥ (1− ε)‖∆φ‖2L2(RN ) − cε‖φ‖
2
L2(RN ) for each φ ∈ H2(RN).

In particular, there exists ω0 ∈ R such that∫
RN

(|∆φ|2 − C(x)φ2) ≥ ω0‖φ‖2L2(RN ) for each φ ∈ H2(RN). (2.21)

Proof: Note that using Corollary 2.5 and β∗(2) > 1
2

we immediately have that DL2(AC) ⊂
Y

1
2

2 = H2(RN).
In the proof of (2.20) it actually suffices to show the first equality and focus on the case

when max{N
4
, 1} < r < 2 as otherwise we know that DL2(AC) = H4(RN) and the result

follows easily.
Hence, we have H4

r (RN) ⊂ H2(RN) ∩ Lr(RN) ∩ L∞(RN) ⊂ Lr
′
(RN). On the other hand,

Proposition 2.1 and Corollary 2.6 with p = r imply that A and QC are continuous from
H4
r (RN) into Lr(RN). Therfore for φ, ψ ∈ H4

r (RN),
∫

RN ∆φ∆ψ and
∫

RN C(x)φψ are well
defined.

Consequently, taking first φ, ψ ∈ C∞
0 (RN) and then using a density argument we obtain∫

RN

ACφψ =

∫
RN

∆φ∆ψ −
∫

RN

C(x)φψ, φ, ψ ∈ H4
r (RN). (2.22)

In what follows we will extend this to φ, ψ ∈ DL2(AC).
12



Observe that A−1
Cλ

(C∞
0 (RN)) is dense in DL2(AC), with the graph norm, since for λ suf-

ficiently large, DL2(AC) = A−1
Cλ

(L2(RN)) and C∞
0 (RN) is dense in L2(RN). Also, from

Corollary 2.6 A−1
Cλ

(C∞
0 (RN)) is contained in H4

r (RN) and then (2.22) actually holds for φ, ψ
from a dense subset of DL2(AC) and thus for any φ, ψ ∈ DL2(AC).

It remains to prove (2.21) for which we will consider open disjoint cubes Qi ⊂ RN centered
at i ∈ ZN with all its edges unitary and parallel to the axes. We assume below that r <∞
and the proof goes with minor changes if r =∞.

Letting r′ = r
r−1

and RN = ∪i∈ZNQi we then have∣∣∣∣∫
RN

C(x)|φ|2
∣∣∣∣ ≤ ∑

i∈ZN

∫
Qi

|C(x)||φ|2 ≤
∑
i∈ZN

‖C‖Lr(Qi)‖φ‖2L2r′ (Qi)

≤ ‖C‖Lr
U (RN )

∑
i∈ZN

‖φ‖2H2s(Qi)
,

(2.23)

where s ∈ (0, 1) is chosen such thatH2s(Qi) ↪→ L2r′(Qi), i.e. 2s−N
2
≥ − N

2r′
. By interpolation

‖φ‖H2s(Qi) ≤ c‖φ‖sH2(Qi)
‖φ‖1−sL2(Qi)

, φ ∈ H2(Qi),

(see [14, §2.4.2(11)]) and hence for each ε > 0 there exists cε > 0 such that∣∣∣∣∫
RN

C(x)|φ|2
∣∣∣∣ ≤ ∑

i∈ZN

(ε‖φ‖2H2(Qi)
+ cε‖φ‖2L2(Qi)

)

= ε‖φ‖2H2(RN ) + cε‖φ‖2L2(RN ), φ ∈ H
2(RN).

(2.24)

Since the norms ‖(−∆+ I)φ‖L2(RN ) and ‖φ‖H2(RN ) are equivalent (see [14, §2.5.3 Step 3]) we
get the result. �

Note that (2.24) implies that Cφ2 ∈ L1(RN) if φ ∈ H2(RN) as stated in Remark 1.2 iv)
of the introduction.

We now conclude the last statement of Theorem 1.1.

Corollary 2.10. Suppose that C ∈ LrU(RN) with r > max{N
4
, 1}. Then

(i) AC is a selfadjoint operator in L2(RN) and
(ii) the analytic semigroup generated by −AC in L2(RN) is exponentially asymptotically
decaying if and only if (2.21) holds with a certain ω0 > 0.

Proof: We know that, for sufficiently large λ > 0, ACλ
is surjective from DL2(AC) onto

L2(RN). On the other hand Lemma 2.9 ensures that ACλ
is a symmetric operator in L2(RN).

Consequently, ACλ
and hence also AC is a selfadjoint operator in L2(RN).

Now, if (2.21) holds with ω0 > 0 then the semigroup {e−ACt : t ≥ 0} decays exponentially
since the spectrum σ(AC) is contained in the interval [ω0,∞).

Conversely, if {e−ACt : t ≥ 0} decays exponentially, that is if ‖e−ACt‖L(L2(RN )) ≤Me−ωt for
some ω > 0, then Theorem 5.3 in [12] and the selfadjointness of AC imply that σ(AC) > 0.
Using the characterization of the fractional power space Y ξ

p for p = 2, ξ = 1
2

(see Corollary 2.5

and (2.19)) we infer that Y
1
2

2 coincides with H2(RN); in particular, the norms ‖A
1
2
Cφ‖L2(RN )
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and ‖φ‖H2(RN ) are equivalent. Also, since fractional powers of a positive selfadjoint operator
are selfadjoint (see [9, p. 27]), we infer that

‖A
1
2
Cφ‖

2
L2(RN ) = 〈ACφ, φ〉L2(RN ), φ ∈ DL2(AC). (2.25)

From this and (2.20) we have

‖φ‖2L2(RN ) ≤ c‖A
1
2
Cφ‖

2
L2(RN ) = c〈ACφ, φ〉L2(RN )

= c

∫
RN

(|∆φ|2 − C(x)φ2), φ ∈ DL2(AC).
(2.26)

We also remark that in a similar way to (2.23)-(2.24) one can obtain∣∣∣∣∫
RN

C(x)φψ

∣∣∣∣ ≤M‖φ‖H2(RN )‖ψ‖H2(RN ), φ, ψ ∈ H2(RN).

Hence, using (2.26) and density of DL2(AC) in Y
1
2

2 = H2(RN), we infer that (2.21) holds
with ω0 > 0. �

Finally we show some continuity of the constant ω0 in Lemma 2.9. Note that in fact the
constant ω0 in (1.10), or in (2.21), gives a lower bound of the bottom spectrum of AC in
L2(RN). So the result below is a sort of continuity of the bottom spectrum with respect to
the diffusion coefficient.

Corollary 2.11. Suppose that C ∈ LrU(RN) with r > max{N
4
, 1} and let ω0 ∈ R be as in

(2.21).
Then there is a continuous decreasing real valued function ω(ν) defined in a certain interval

[0, ν0] such that∫
RN

(
(1− ν)|∆φ|2 − C(x)φ2

)
≥ ω(ν)

∫
RN

φ2 for all φ ∈ H2(RN), ν ∈ [0, ν0],

and

lim
ν→0+

ω(ν) = ω(0) = ω0.

Proof: We write∫
RN

(
(1− ν)|∆φ|2 − C(x)φ2

)
= (1− ν)

∫
RN

|∆φ|2 − (1− 2ν)

∫
RN

C(x)|φ|2 − 2ν

∫
RN

C(x)|φ|2

and then using (2.24) with ε = 1/2 in the last term we get∫
RN

(
(1− ν)|∆φ|2 − C(x)φ2

)
≥ (1− 2ν)

∫
RN

(
|∆φ|2 − C(x)φ2

)
− νc‖φ‖2L2(RN ).

Hence, using (2.21) we get∫
RN

(
(1− ν)|∆φ|2 − C(x)φ2

)
≥

(
ω0(1− 2ν)− νc

)
‖φ‖2L2(RN ).

Letting ω(ν) =
(
ω0(1− 2ν)− νc

)
we obtain the result. �
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3. Local well posedness for nonlinear problems

In this section we prove that there is a unique solution of (1.1) continuously depending on
the initial condition, where u0 ∈ Lp(RN) or u0 ∈ H2

p (RN), respectively and 1 < p < ∞. In
particular we will prove Theorems 1.3 and 1.4.

We will consider (1.1) rewritten as{
u̇+ Amu = f0(·, u) + g =: F(u), t > 0,

u(0) = u0 ∈ Lp(RN) or H2
p (RN),

(3.1)

where

Am := A−m(x)I,

for which the results of Section 2 apply because of (1.11). In particular we will use below
the scale of spaces, Eα

p , −β∗(p′) ≤ α ≤ β∗(p), as in (2.18) and the smoothing properties of
the semigroup generated by −Am on this scale, as in Corollary 2.7.

We start from the following technical lemma that will be used below.

Lemma 3.1. If f0 satisfies (1.3), (1.5) and f0(·, 0) = 0 then there exists a decomposition

f0(x, v) = f01(x, v) + f02(x, v), x ∈ RN , v ∈ R,

where

f01(x, 0) = f02(x, 0) = 0,

f01 : RN × R→ R is a globally Lipschitz map

and

|f02(x, v1)− f02(x, v2)| ≤ c|v1 − v2|(|v1|ρ−1 + |v2|ρ−1), v1, v2 ∈ R, (3.2)

for some c > 0.

Proof: Define

f01(x, v) =

{
f0(x, v), x ∈ R, |v| ≤ 1,

f0(x, 1), x ∈ R, |v| > 1,

and

f02(x, v) = f0(x, v)− f01(x, v), x ∈ RN , v ∈ R.

With the aid of (1.3), choosing L0 > 0 as a Lipschitz constant for f0 restricted to RN×[−1, 1],
we have that

|f01(x, v1)− f01(x, v2)| ≤ L0|v1 − v2|, x ∈ RN , v1, v2 ∈ R.

Using the above relations and (1.5) we obtain (3.2). �

Below we will prove Theorems 1.3 and 1.4 for which we will use the analytic semigroup
approach as in [9]. Since we deal with critical exponents we will actually use the extension
of this approach developed in [3].
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3.1. Local well posedness of (1.1) in Lp(RN). In this subsection we prove the existence of
solutions of (1.1) with initial data u0 ∈ Lp(RN), for which we will assume that the condition
(1.5) holds with some 1 < ρ ≤ 1 + 4p

N
=: ρ1

c . We remark that the solutions will satisfy
the variation of constants formula (1.14) and will possess appropriate regularity properties;
namely (1.15) holds.

Furthermore, whenever ρ < 1 + 4p
N

= ρ1
c , the solutions satisfy (1.17) In particular, an

Lp(RN)-estimate on compact time intervals will guarantee that the solution exists globally
for t ≥ 0 (see [3]; also [6, Corollary 1.1]).

Proof of Theorem 1.3. Recalling the formulation of the problem as in (3.1) and following
the approach in [3] all what needs to be shown is that F in (3.1) is an ε-regular map relative
to the pair of spaces from the fractional power scale associated with the main part operator.
This, in terms of Eα

p -scale and for the case when initial data are in Lp(RN), translates into
the requirement that the condition

‖F(v)−F(w)‖
E

γ(ε)−1
p

≤ c‖v − w‖Eε
p

(
1 + ‖v‖ρ−1

Eε
p

+ ‖w‖ρ−1
Eε

p

)
, v, w ∈ Eε

p, (3.3)

holds for certain constants c > 0, ε ∈ (0, 1
ρ
), and γ(ε) ∈ [ρε, 1).

Actually, due to Lemma 3.1, it is sufficient to show that there are constants c > 0 and

0 < ε < 1, ρε ≤ γ(ε) < 1 (3.4)

such that

‖f02(v)− f02(w)‖
E

γ(ε)−1
p

≤ c‖v − w‖Eε
p

(
‖v‖ρ−1

Eε
p

+ ‖w‖ρ−1
Eε

p

)
, v, w ∈ Eε

p. (3.5)

Observe that Corollary 2.7 yields

Eε
p = H4ε

p (RN), ε ∈ [0, β∗(p)],

Eγ(ε)−1
p = (H

4(1−γ(ε))
p′ (RN))′, γ(ε) ∈ [1− β∗(p′), 1)

(3.6)

and hence we have

Eε
p ↪→ Ls(RN), α ∈ [0, β∗(p)], 4ε− N

p
≥ −N

s
, s ≥ p,

Eγ(ε)−1
p ←↩ Lσ(RN), γ(ε) ∈ [1− β∗(p′), 1),

Np

N + 4(1− γ(ε))p
≤ σ ≤ p, σ > 1.

(3.7)

Note that the second embedding in (3.7) holds with σ = Np
N+4(1−γ(ε))p > 1 provided that

1 > γ(ε) ≥ 1− β∗(p′) =: γ̂ and γ(ε) >
N + 4p−Np

4p
=: γ̃. (3.8)

Using this we have

‖f02(v)− f02(w)‖
E

γ(ε)−1
p

≤ c′‖f02(v)− f02(w)‖
L

Np
N+4(1−γ(ε))p (RN )

≤ c′‖ĉ|v − w|(|v|ρ−1 + |w|ρ−1)‖
L

Np
N+4(1−γ(ε))p (RN )

≤ c′′
∫

RN

(
|v − w|

Np
N+4(1−γ(ε))p

(
|v|

Np(ρ−1)
N+4(1−γ(ε))p + |w|

Np(ρ−1)
N+4(1−γ(ε))p

)
dx

)N+4(1−γ(ε))p
Np

.
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Applying next Hölder’s inequality with

θ̂ =
N + 4(1− γ(ε))p

N − 4pε
, θ̂′ =

θ̂

θ̂ − 1
=

N + 4(1− γ(ε))p
4(1− γ(ε))p+ 4pε

,

and thus assuming that
N

4p
> ε, (3.9)

we obtain

‖f02(v)− f02(w)‖
E

γ(ε)−1
p

≤ c′′′‖v − w‖
L

Np
N−4pε (RN )

(
‖v‖ρ−1

L
N(ρ−1)

4(1−γ(ε))+4ε (RN )

+ ‖w‖ρ−1

L
N(ρ−1)

4(1−γ(ε))+4ε (RN )

)
.

(3.10)

The right hand side of (3.10) can be bounded by the right hand side of (3.5) provided that

H4ε
p (RN) ↪→ L

Np
N−4pε (RN) (3.11)

and

H4ε
p (RN) ↪→ L

N(ρ−1)
4(1−γ(ε))+4ε (RN), (3.12)

where we also have the limitation
ε ≤ β∗(p). (3.13)

Observe that (3.13) is true whenever (3.9) is satisfied. Indeed, if β∗(p) < 1 we have it
because β∗(p) > N

4p
whereas if β∗(p) = 1 this is a consequence of the restriction ε < 1.

On the other hand, assuming (3.9) note that (3.11) holds true, whereas for (3.12) one
needs

γ :=
(4εp−N)(ρ− 1) + 4(1 + ε)p

4p
≥ γ(ε) ≥ 4(1 + ε)p−N(ρ− 1)

4p
=: γ. (3.14)

We remark that for ρ ∈ (1, 1+ 4p
N

] and ε > 0 we have γ > γ > 0 and γ ≥ ερ. We also have

1 > γ if ε ∈ (0, N(ρ−1)
4pρ

). Furthermore, γ > γ̃ if and only if ε > max{0, N(ρ−p)
4pρ
} and γ̄ > γ̂ if

ε > N(ρ−1)
4pρ

.

The set of (ρ, ε, γ(ε)) solving (3.4), (3.8), (3.9) and (3.14) is thus nonempty and contains

triples (ρ, ε, γ(ε)), where ρ ∈ (1, 1 + 4p
N

], ε ∈ (max{0, N(ρ−p)
4pρ
}, N(ρ−1)

4pρ
) and

γ(ε) ∈ [ρε, γ] ∩ [γ, γ] ∩ (γ̃, γ] ∩ [γ̂, γ̄] =: I(ε).
Actually, for admissible (ρ, ε, γ(ε)) the left hand side inequality in (3.14) implies

ρ ≤ N + 4p− 4pγ(ε)

N − 4pε

and via (3.4) we then have

ρ ≤ N + 4p− 4pρε

N − 4pε
.

The second of these inequalities holds if and only if ρ ≤ N+4p
N

= ρ1
c . The first one shows that

ρ = ρ1
c cannot be attained for any γ(ε) > ρ1

cε. Thus ρ = ρ1
c necessitates γ(ε) = ερ1

c , in which
case we have γ = ερ1

c ; that is, if ρ = ρ1
c , I(ε) = {ερ1

c}.
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Therefore (3.5) and (3.3) are satisfied. We thus have that F in (3.1) is an ε-regular map
relative to the pair of spaces (E0

p , E
−1
p ). Thus [3, Corollary 1] ensures that (1.1) is locally

well posed in E0
p and, in addition,

u ∈ C([0, τ0), E
0
p) ∩ C((0, τ0), E

γ(ε)
p ) ∩ C1((0, τ0), E

γ(ε)−1
p ). (3.15)

Since the above analysis shows that γ(ε) can be chosen arbitrarily less than γ(ρ, N(ρ−1)
4pρ

) = 1

we infer from (3.15) and (3.6) that

u ∈ C((0, τ0), H
4θ
p (RN)) ∩ C1((0, τ0), H

4θ
p (RN)), whenever θ ≤ β∗(p) and θ < 1. (3.16)

Hence, if β∗(p) < 1, (3.16) gives (1.15).
If β∗(p) = 1 then from (3.16) we infer that u ∈ H2

p (RN). Using Theorem 1.4 (see (3.29)
below), after restarting the solution at any positive time of its existence, we then obtain
(1.15). Note that if 2 < N

p
, then Theorem 1.4 iii) applies as ρ1

c < ρ2
c . On the other hand,

if 2 ≥ N
p

Theorem 1.4 ii) or iii) apply as well because we are dealing now with the case

β∗(p) = 1 so that r ≥ p. �

Remark 3.2. Due to the above consideration it suffices to assume that g belongs to E
γ(ε)−1
p

for arbitrarily fixed γ(ε) ∈ I(ε), ε ∈ (max{0, N(ρ−p)
4pρ
}, N(ρ−1)

4pρ
), and the problem (1.1) remains

well posed in Lp(RN) with ρ ∈ (1, ρ1
c ]. Nonetheless the solution will not be as regular as

stated in (1.15).

3.2. Local well posedness of (1.1) in H2
p (RN). We proceed to the proof of Theorem 1.4.

First note that under the assumptions of the Theorem we have β∗(p) > 1
2

so that from
the results in Corollary 2.7, in case (i) (resp. (ii)) of Theorem 1.4, we have the embedding

E
1
2
p ↪→ L∞(RN) (resp. E

1
2
p ↪→ Lq(RN) for q ∈ [p,∞)). Therefore, the Nemytskĭı map F is

Lipschitz continuous on bounded sets from E
1
2
p into Ep. Consequently, both cases (i) and (ii)

in Theorem 1.4, as well as (1.16) follow from [9, Theorem 3.3.3].
On the other hand, in case (iii), we will use the approach of [3, Corollary 1]. The reason

for this is that now F may not take H2
p (RN) into Lp(RN) unless ρ ≤ N

N−2p
. Actually note

that if 1 < ρ ≤ N
N−2p

the map F is Lipschitz continuous on bounded sets from H2
p (RN) into

Lp(RN); see Proposition 3.4. So this case follows again from [9, Theorem 3.3.3].

Proof of Theorem 1.4. As mentioned above we only consider case (iii) here focusing on
the situation when

ρ ∈ (
N

N − 2p
, ρ2

c ]. (3.17)

Following [3] we will show that F is an ε-regular map relative to the pair of spaces

(E
1
2
p , E

− 1
2

p ); namely, there are constants c > 0, ε ∈ (0, 1
ρ
), and γ(ε) ∈ [ρε, 1) such that

‖F(v)−F(w)‖
E

γ(ε)− 1
2

p

≤ c‖v − w‖
E

1
2+ε
p

(
1 + ‖v‖ρ−1

E
1
2+ε
p

+ ‖w‖ρ−1

E
1
2+ε
p

)
, v, w ∈ E

1
2
+ε

p . (3.18)

Note that, using Lemma 3.1, it is actually sufficient to show that (3.18) holds for F = f02.
18



Observe that Corollary 2.7 yields

E
1
2
+ε

p = H2+4ε
p (RN), β∗(p) ≥ 1

2
+ ε ≥ 0,

E
γ(ε)− 1

2
p = (H

2−4γ(ε)
p′ (RN))′, −β∗(p′) ≤ γ(ε)− 1

2
< 0

(3.19)

and hence we have

E
1
2
+ε

p ↪→ Ls(RN), β∗(p) ≥ 1

2
+ ε ≥ 0, 2 + 4ε− N

p
≥ −N

s
, s ≥ p,

E
γ(ε)− 1

2
p ←↩ Lσ(RN), γ(ε) ∈ [

1

2
− β∗(p′), 1

2
],

Np

N + (2− 4γ(ε))p
≤ σ ≤ p, σ > 1.

(3.20)

Given ρ ∈ (1, N+2p
N−2p

] and some suitable

0 < ε < 1, ρε ≤ γ(ε) < 1 (3.21)

from the second embedding in (3.20) we have

‖f02(v)− f02(w)‖
E

γ(ε)− 1
2

p

≤ c′‖f02(v)− f02(w)‖
L

Np
N+(2−4γ(ε))p (RN )

≤ c′‖|v − w|(|v|ρ−1 + |w|ρ−1)‖
L

Np
N+(2−4γ(ε))p (RN )

≤ c′′
(∫

RN

|v − w|
Np

N+(2−4γ(ε))p
(
|v|

Np(ρ−1)
N+(2−4γ(ε))p + |w|

Np(ρ−1)
N+(2−4γ(ε))p

)
dx

)N+(2−4γ(ε))p
Np

,

(3.22)

where N + (2− 4γ(ε))p > 0 for γ(ε) < 1 as N > 2p. Using next Hölder’s inequality with

θ =
N + (2− 4γ(ε))p

N − 2p− 4pε
, θ′ =

θ

θ − 1
=
N + (2− 4γ(ε))p

4(1 + ε− γ(ε))p
,

we obtain

‖f02(v)− f02(w)‖
E

γ(ε)− 1
2

p

≤ c′′′‖v − w‖
L

Np
N−2p−4pε (RN )

(
‖v‖ρ−1

L
N(ρ−1)

4(1+ε−γ(ε)) (RN )

+ ‖w‖ρ−1

L
N(ρ−1)

4(1+ε−γ(ε)) (RN )

)
.

(3.23)

According to the first embedding in (3.20) the right hand side of (3.23) will be bounded by
the right hand side of (3.18) provided that

H2+4ε
p (RN) ↪→ L

Np
N−2p−4pε (RN) (3.24)

and

H2+4ε
p (RN) ↪→ L

N(ρ−1)
4(1+ε−γ(ε)) (RN), (3.25)

where ε is limited by the condition

ε ∈ (0, β∗(p)− 1

2
]. (3.26)
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Application of (3.20) and Hölder’s inequality in (3.22)-(3.23) requires that

1

2
≥ γ(ε) ≥ 1

2
− β∗(p′), p ≥ Np

N + (2− 4γ(ε)p
> 1,

N − 2p

4p
> ε, θ =

N + (2− 4γ(ε))p

N − 2p− 4pε
> 1,

for which it is sufficient to assume (3.21) and

1

2
≥ γ(ε) >

2p−Np+N

4p
=: γ̃,

N − 2p

4p
> ε > 0. (3.27)

Note that requirement that γ(ε) ≥ 1
2
− β∗(p′) is not a real restriction here, since when

β∗(p′) ≥ 1
2
, we have γ(ε) > 0, whereas when β∗(p′) < 1

2
, from (3.27) we have γ̃ > 1

2
− β∗(p′).

Also note that, since r > N
4
, the second condition in (3.27) above implies (3.26) and then

(3.24) holds true as well.
On the other hand, for (3.25) one needs (3.26) and

γ :=
(ρ− 1)(2 + 4ε− N

p
) + 4(1 + ε)

4
≥ γ(ε) ≥ 4p(1 + ε)−N(ρ− 1)

4p
= γ. (3.28)

We remark that γ > γ and γ ≥ ερ for every ρ ∈ (1, N+2p
N−2p

], ε > 0. Furthermore, 1
2
≥ γ if

(N−2p)(ρ−1)
4pρ

− 1
2ρ
≥ ε and γ > γ̃ for ε > max{0, N(ρ−p)−2pρ

4pρ
}, whereas via (3.17) we have that

(N−2p)(ρ−1)
4pρ

− 1
2ρ
> max{N(ρ−p)−2pρ

4pρ
, 0}.

What was said above ensures that, the inequalities (3.21), (3.27) and (3.28) have nonempty
set of solutions, which consists of triples (ρ, ε, γ(ε)), where

ρ ∈ (
N

N − 2p
,
N + 2p

N − 2p
], ε ∈ (max{0, N(ρ− p)− 2pρ

4pρ
}, (N − 2p)(ρ− 1)

4pρ
− 1

2ρ
]

and
γ(ε) ∈ [ρε, γ] ∩ [γ, γ] ∩ (γ̃, γ] =: I(ε).

Observe that for any admissible (ρ, ε, γ(ε)) the left hand side inequality in (3.28) leads to
the condition

ρ ≤ N + 2p− 4pγ(ε)

N − 2p− 4pε

and (3.21) also to

ρ ≤ N + 2p− 4pρε

N − 2p− 4pε
.

The latter inequality holds if and only if ρ ≤ 1 + 4p
N−2p

= ρ2
c and the value ρ = ρ2

c cannot be

attained for γ(ε) > ρ2
cε but only for γ(ε) = ρ2

cε; that is, if ρ = ρ2
c , I(ε) = {ερ2

c}.
Observe finally that (1.18) holds whenever ρ < ρ2

c as in this case γ(ε) > ρ2
cε (see [3], also

[6, Corollary 1.1]).
Hence (3.18) is satisfied and local well posedness of (1.1) follows from [3, Corollary 1]. In

addition, we have from the results in [3, Corollary 1] that

u ∈ C([0, τ0), E
1
2
p ) ∩ C((0, τ0), E

1
2
+γ(ε)

p ) ∩ C1((0, τ0), E
γ(ε)− 1

2
p ). (3.29)
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Since the above analysis shows that γ(ε) can be chosen equal 1
2

then from (3.29) we obtain

(1.16) as E1
p ↪→ H

4β∗(p)
p (RN). �

Remark 3.3. Due to the above consideration it suffices to assume that g belongs to E
γ(ε)− 1

2
p

for arbitrarily fixed γ(ε) ∈ I(ε), ε ∈ (max{0, N(ρ−p)−2pρ
4pρ

}, (N−2p)(ρ−1)
4pρ

− 1
2ρ

] and the problem

(1.1) remains well posed in H2
p (RN) although the solution is less regular than it is stated in

(1.16).

Now we prove the following result, mentioned above.

Proposition 3.4. Assume (1.2)-(1.4) and (1.11). Suppose also that g ∈ Lp(RN) with a
certain p ∈ [2,∞) and 2 < N

p
and (1.5) holds with some 1 < ρ < 1 + 4p

N−2p
=: ρ2

c.

Then the map F defined in (3.1) is Lipschitz continuous on bounded sets from E
1
2
p =

H2
p (RN) into E

γ− 1
2

p with

γ := min{N + 2p− ρ(N − 2p)

4p
,
1

2
} ∈ (0,

1

2
].

Actually, whenever N > 2p, 1 < ρ ≤ N
N−2p

and p ∈ (1,∞), F is Lipschitz continuous on

bounded sets from E
1
2
p = H2

p (RN) into E0
p = Lp(RN).

Proof: Note that γ < 1
2

if and only if ρ ∈ ( N
N−2p

, N+2p
N−2p

). In what follows we first prove the

last part of the proposition.
If ρ ∈ (1, N

N−2p
] then for f02 defined in Lemma 3.1 we have that

‖f02(v)− f02(w)‖Lp(RN ) ≤ c‖|v − w|(|v|ρ−1 + |w|ρ−1)‖Lp(RN )

≤ c‖v − w‖
L

Np
N−2p (RN )

‖|v|ρ−1 + |w|ρ−1‖
L

N
2 (RN )

≤ c‖v − w‖
L

Np
N−2p (RN )

(
‖v‖ρ−1

L
N(ρ−1)

2 (RN )
+ ‖w‖ρ−1

L
N(ρ−1)

2 (RN )

)
≤ c‖v − w‖H2

p(RN )

(
‖v‖ρ−1

H2
p(RN )

+ ‖w‖ρ−1
H2

p(RN )

)
.

Using Lemma 3.1 we obtain that in the above situation F is Lipschitz continuous on bounded

sets from E
1
2
p = H2

p (RN) into E0
p = Lp(RN).

Assume now that ρ ∈ ( N
N−2p

, N+2p
N−2p

). Then, by assumption, N > 2p > 4 and p ≥
Np

N+(2−4γ)p
= Np

ρ(N−2p)
> 1. Also note that N(ρ−1)

4(1−γ) = Np
N−2p

≥ p. Using (3.19)-(3.20) and

Hölder’s inequality with θ = N+(2−4γ)p
N−2p

and θ′ = θ
θ−1

= N+(2−4γ)p
4(1−γ)p we get

21



‖f02(v)− f02(w)‖
E

γ− 1
2

p

≤ c′‖f02(v)− f02(w)‖
L

Np
N+(2−4γ)p (RN )

≤ c′c‖|v − w|(|v|ρ−1 + |w|ρ−1)‖
L

Np
N+(2−4γ)p (RN )

≤ c′c‖v − w‖
L

Np
N−2p (RN )

‖|v|ρ−1 + |w|ρ−1‖
L

N
4(1−γ) (RN )

≤c′′‖v − w‖H2
p(RN )

(
‖v‖ρ−1

L
N(ρ−1)
4(1−γ) (RN )

+ ‖w‖ρ−1

L
N(ρ−1)
4(1−γ) (RN )

)
≤c′′′‖v − w‖

E
1
2
p

(
‖v‖ρ−1

E
1
2
p

+ ‖w‖ρ−1

E
1
2
p

)
,

and using Lemma 3.1 we complete the proof. �
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